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A reactive system [3] is characterized by a control progmm that interacts 
with an environment (or controlled prognzrn). The control program monitors 
the environment and reacts to significant events by sending commands to the 
environment. This structure is quite general. Not only are most embedded 
real-time systems reactive systems, but so are monitoring and debugging 
systems and distributed application management systems. 

Since reactive systems are usually long-running and may control physical 
equipment, fault-tolerance is vital. Our research tries to understand the 
principal issues of fault-tolerance in real-time reactive systems and to build 
tools that allow a programmer to design reliable, real-time reactive systems. 

A reactive system has a structure much like that of a client-server system 
(see Figure 1). Both systems contain components that are input-driven- 
servers are input-driven by the clients, and the control program is input- 
driven by its environment. This is an important similarity, since there exist 
techniques for making deterministic servers fault-tolerant [1,7]. There are, 
however, two essential differences between reactive systems and client-server 
sys tems: 

1. Whereas a client explicitly invokes a server, the environment does not 
explicitly invoke the control program. Instead, the environment is in- 
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strumented with sensors and actuators that allow the control program 
to read and change the state of the environment. 

2. Since the environment does not explicitly invoke the control program, 
any synchronization between these programs must be done in ways 
other than by using rendezvous. One technique is to express the system 
specification in terms of time; that is, to set hard real-time constraints 
on the execution of the control program. We call a reactive system 
with real-time constraints a real-time reactive system. 
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Figure 1: System Structures 

In order to  make real-time reactive systems reliable, several issues must 

0 How can a control program be built to tolerate failures of sensors 
and actuators? To achieve this, we have developed a methodology for 
transforming a control program that references physical values into one 
that tolerates sensors that can fail and can return inaccurate values. 

0 How can the real-time reactive system be built to tolerate failures of 
the control program? Towards this goal, we are investigating whether 
the techniques presented in [1,7] can be extended to real-time reactive 
systems. 

be addressed: 
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0 How can the environment be specified in a way that is useful for writing 
a control program? Towards this goal, we are investigating whether 
a system with real-time constraints can be expressed as an equivalent 
sys tem without such constraints. 

Meta 

In the Metu project [6,2] we have been developing an architecture based 
on sensors and actuators that supports the development of reliable reactive 
systems. This architecture is very general-for example, it supports man- 
agement of distributed applications as well as process control systems. The 
major issues in reactive systems for distributed application management are 
instrumentation of the application, representation of the application, and 
efficient and fault-tolerant monitoring of the application. 

The functional architecture of Meta is shown in Figure 2. A programmer 
follows two steps using this to develop the control program of a distribu- 
ted application. First, the programmer instruments the application and its 
runtime environment with sensors and actuators. A set of sensors and actu- 
ators are provided by default, including sensors on machine load, allocated 
resources, and the global variables of running programs. Second, the pro- 
grammer describes the application using an object-oriented data model and 
writes the control program referencing this data model. The control pro- 
gram can both make direct calls on the data model and register a set of 
policy rules that Meta will monitor and enforce. 

I monitoring and control I 
I data model I 
I sensors 1 I actuators I 

Figure 2: Meta Functional Architecture 

Sensors are functions that return typed values of the application state 
or the environment state. Sensors may be polled for the current value of the 
function, and a wutch may be set on a sensor, instructing Meta to notify the 
client when the sensor value satisfies some user-defined predicate. Sensors 
and actuators are implemented by stubs that run on machines supporting the 
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application. In order to instrument a process with a new sensor or actuator, 
the process being instrumented registers a procedure with the sensor stub. 
The stub is responsible for responding to poll requests and for periodically 
checking to see if any outstanding watches are satisfied. Additionally, an 
instrumented process can notify the stub that a specified sensor’s value has 
changed, allowing the stub to reevaluate the affected outstanding watches. 

Once instrumented, the programmer specifies the structure of the appli- 
cation by using an object-oriented data modeling language called Lomita. 
Through Lomita, the application is cast as a temporal object-oriented data- 
base. Entity and relationship sets have attributes that fall into one of three 
categories : 

1. Properties, whose values are static for a given entity. For example, the 
type of a machine is a property. The attributes comprising a key must 
be properties. 

2. Sensors, whose values are dynamic for a given entity. A sensor at- 
tribute can be defined as one of the sensors supplied by the application, 
or its value can be derived from the other sensors. 

3. Actuators, which are invoked on an entity. An actuator attribute is 
defined as one of the actuators supplied by the application. 

The intended behavior of the control program is described as a set of 
Lomita rules. A rule states the action to be performed when a specified 
condition of the application is observed. Conditions are expressed over sen- 
sor values using a real-time extension of temporal interval logic [8 ] .  For 
example, a simple rule might be that if the number of processes compris- 
ing a replicated service is too low or the average service load is too high, 
then start a new process on the lightest-loaded machine not yet running the 
service. Lomita will redundantly monitor this condition and guarantee that 
exactly one version of the rule will react when the condition is satisfied. 

We have implemented a version of Meta that runs on UNIX and have 
used it to control some simple applications. We are now developing Lomita 
and are applying Meta to more complex applications, such as a reliable 
version of parde l  make, a seismological monitoring application, and a dis- 
tributed configuration management system. Meta is built on top of the 
Isrs distributed toolkit [2], making many of the issues of fault-tolerance and 
agreement simple to address. 

We are also extending Meta for process control applications. This is a 
significant extension, since the control program is monitoring and controlling 
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a physical system. The next section addresses one of the issues raised by 
this new setting. 

Making Sensors Reliable 

One of the fundamental issues of making real-time reactive systems reliable 
is how sensor failures can be masked [4,5]. We have developed a methodology 
for transforming a control program that references physical values into one 
that tolerates sensors that can fail and can return inaccurate values. Our 
methodology is as follows: 

1. A specification of the control program is written in terms of the state 
variables of the physical system. For example, the specification of a 
program controlling a chemical reaction vessel would refer to a variable 
T whose value is assumed to be the temperature of the vessel. 

2. Each physical state variable referenced by the specification is replaced 
with a reference to an abstruct sensor. An abstract sensor provides a 
set of values (such as an interval) that contains the physical variable of 
interest. At this step, uncertainty in sensor values becomes an issue, 
and the specification must be re-examined and possibly changed to 
accommodate this uncertainty. Ideally, the specification should be 
strengthened, but in some cases this may not be possible. 

' 

3. A control program is written based on the specification produced by 
Step 2. This program references abstract sensors that are assumed to 
always contain the correct value of the physical variables. 

4. For each abstract sensor referenced by the program written in Step 3, 
a set of abstract sensors are written such that they fail independently. 
Each abstract sensor is implemented using a concrete sensor, which is a 
physical device that "reads" a physical variable, such its a thermometer 
or a pressure gauge. This step will require some knowledge of the 
physical process being controlled as well as the specification of the 
concrete sensor. 

5 .  A fault-tolerant averaging algorithm is used with these replicated ab- 
stract sensor values in order to calculate another abstract sensor that 
is correct even if some of the original sensors are incorrect. The av- 
eraging algorithm assumes that no more than f out of the n abstract 

5 



sensors are incorrect, where f is a parameter. The relation between n 
and f (outside of 0 5 f < n) depends on the way sensors can fail. 

Note that programs written in Lomita reference abstract sensors, and 
Meta provides the mechanisms to implement abstract sensors from concrete 
sensors assuming a simple failure model. The programmer need implement 
abstract sensors only for specialized applications; for most applications the 
Meta system handles Steps 4 and 5 .  

Several issues with our approach remain open. One interesting problem 
is that of accommodating abstract sensors and actuators in process control 
problem specifications. In Step 2 of the methodology, the developer needs to 
examine the impact of uncertainty on the specification. All process control 
systems must accommodate such uncertainty; our methodology, however, 
makes this problem explicitly part of the refinement of the problem. We 
are now looking at ways to express and reason about such uncertainty in 
process control systems. 

AcknowIedgements Ken Birman and Robert Cooper have actively con- 
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time systems is in collaboration with Fred Schneider. 
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